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Abstract
Starting from a differential realization of the generators of the so(2, 2) algebra
we connect the eigenvalue equation of the Casimir invariant either with the
hypergeometric equation, or the Schrödinger equation. In the latter case we
consider problems for which so(2, 2) appears as a potential algebra, connecting
states with the same energy in different potentials. We analyse the role of
the two so(2, 1) subalgebras and point out their importance for PT -symmetric
problems, where the doubling of bound states is known to occur. We present
two mechanisms for this and illustrate them with the example of the Scarf and
the Pöschl–Teller II potentials. We also analyse scattering states, transmission
and reflection coefficients for these potentials.

PACS numbers: 03.65.Fd, 03.65.Ge, 03.65.Nk

1. Introduction

Exactly solvable quantum mechanical potentials are often discussed using various linear
differential operators which connect different solutions of the wave equations. A particularly
interesting case is when the Hamiltonian can also be constructed from these operators. The
underlying ideas behind these approaches might have different origins,but the applied technical
methods are often rather similar.

One of the approaches of this kind is the factorization method [1], in which case the
Schrödinger equation, which is a second-order differential equation, is factorized into two
first-order operators, which are also Hermitian adjoints of each other. It follows from
the construction that the first-order operators connect eigenstates of different Hamiltonians
corresponding to the same energy eigenvalue. A reformulation of the factorization method
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was introduced some twenty years ago in the context of supersymmetric quantum mechanics
(SUSYQM) [2]. The key element of this method is also the use of first-order differential
operators connecting isoenergetic levels of different potentials.

A different method is the use of algebraic (group theoretical) techniques in the description
of quantum mechanical potentials. In this case the ladder and weight operators typically
appear as the elements of various algebras, while the Hamiltonian is related to the Casimir
operator of the same algebra (although in some approaches its role is played by an element
of the algebra). An important aspect of the algebraic approach is that the powerful
mathematical methods of group theory can directly be applied to physical systems, and
this often simplifies the discussion of these problems. The solutions of the wave equations
are assigned to group representations. Generally bound-state solutions are considered. In
some cases the states assigned to the same irreducible representation (irrep) are bound
levels belonging to the same potential problem either with different energies or degenerate in
energy. In these cases we talk about spectrum generating algebras and degeneracy algebras,
respectively.

When all the states of a problem can be assigned to a single irrep of some algebra, it takes
the name of dynamical algebra. Examples of this are so(4, 2) for the Coulomb potential [3]
and mp(6) for the isotropic three-dimensional harmonic oscillator [4]: the latter is the algebra
of the metaplectic group, Mp(6), which is the covering group of the symplectic group Sp(6, R),
containing the states with even numbers of oscillator quanta in one irrep and the states with
odd numbers of quanta in another irrep.

A more recent development was the introduction of the concept of the potential algebra
[5]. This is somewhat similar to the degeneracy algebra in the sense that the elements of
the algebra connect degenerate levels which, however, belong to different Hamiltonians. Not
surprisingly, the problems discussed in terms of the potential algebra context are essentially the
same ones that can be approached using the factorization method and SUSYQM. The number
of exactly solvable problems admitting a potential algebra is limited to some well-known
(shape-invariant [6]) problems such as the Pöschl–Teller and Morse potentials, for example.
The ladder operators of the potential algebras can be recognized as the shift operators of type
A problems in the factorization method [1, 7] and also as the operators A and A† related
to these problems in SUSYQM. The practical equivalence of the potential algebra and the
SUSYQM approach to shape-invariant potentials has been discussed in [8], and later on in
[9, 10].

A further interesting aspect of potential algebras is that whenever they are non-compact,
scattering states can be treated on an equal footing with bound states: the former belong to
the continuous unitary irreps (unirreps) and the latter to the discrete unirreps of the relevant
algebras. Non-compact potential algebras are so(2, 1) ∼ su(1, 1) assigned to the Morse and
the Pöschl–Teller potentials [5], but later on the larger so(2, 2) potential algebra was also
introduced [11, 12]. In fact, so(2, 2) has been identified as the algebra of the rather general
Natanzon family [13] of solvable potentials [11, 12].

Here we discuss a rather general differential realization of the so(2, 2) algebra and attempt
to describe second-order differential equations by identifying them with the equation of the
Casimir operator(s) of this algebra. Besides obtaining the Schrödinger equation, we also study
the hypergeometric differential equation with this method. With this we generalize an earlier
work of ours in which we considered a similar differential realization of the su(1, 1) ∼ so(2, 1)
algebra to discuss shape-invariant potentials [8]. Our motivation is a recent result concerning
the algebraic approach [14] to some so-calledPT invariant potentials [15], which are complex,
nevertheless typically possess real energy eigenvalues. In particular, we found that the bound
(normalizable) states of the PT invariant version of the Scarf potential are doubled, in the
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sense that states that appear as resonances in the Hermitian version also become bound states
with real energy eigenvalues [14]. This means that the so(2, 1) algebra associated with the
usual bound states is also doubled, therefore the bound states of this problem now belong
to a larger algebra which includes both so(2, 1) algebras. The doubling of bound states in
PT -symmetric potentials can occur via another mechanism too, i.e. by regularizing their
singularities [16]. This naturally raises the question whether this process also has algebraic
implications.

In section 2 we present the differential realization of the so(2, 2) algebra using a formalism
which allows the so(4) and, in principle, the so(3) ⊕ so(2, 1) algebras too, and derive the
Schrödinger equation as well as the hypergeometric differential equation. In section 3 we
discuss the role of the ladder operators and their relation to the doubling of normalizable
states, while in section 4 we present our conclusions.

2. A differential realization of some six-parameter Lie algebras

Here we give a constructive differential realization of the six-parameter algebras so(2, 2),
so(4) and so(3) ⊕ so(2, 1). We follow the presentation of a similar paper [8], where a
realization of the su(1, 1) algebra was introduced in terms of first-order linear differential
operators. In this construction we start with generators containing altogether ten functions,
which reduce to two after enforcing the fulfilment of the appropriate commutation
relations.

Let us consider the construction of two sets of operators

J± = e±iφ

(
±h1(x)

∂

∂x
± g1(x) + f1(x)Jz + c1(x) + k1(x)Kz

)
(1)

Jz = −i
∂

∂φ
(2)

and

K± = e±iχ

(
±h2(x)

∂

∂x
± g2(x) + f2(x)Jz + c2(x) + k2(x)Kz

)
(3)

Kz = −i
∂

∂χ
. (4)

Now impose the commutation relations

[Jz, J±] = ±J± [J+, J−] = −2aJz (5)

[Kz,K±] = ±K± [K+,K−] = −2bKz (6)

[Ji,Kj ] = 0 i, j = +,−, z. (7)

For a = b = 1 we get the so(2, 1) ⊕ so(2, 1) algebra, while for a = 1, b = −1 and a = b = −1
we get the so(3) ⊕ so(2, 1) and so(3) ⊕ so(3) algebras, respectively. It is well known [3]
that the first algebra is isomorphic to so(2, 2) and the third algebra to so(4). In particular,
Hermitian potentials connected with so(2, 2) as a potential algebra have been studied in
[11, 12]. Our approach is more general, in the sense that it permits treatment of other six-
parameter algebras, such as so(4) and so(3) ⊕ so(2, 1), and is extended to non-Hermitian
PT -symmetric potentials. The above relations lead to a system of first-order differential



5044 G Lévai et al

equations for the functions appearing in equations (1) and (3), which reduces to the following
relations after some tedious but straightforward calculations:

k2
2 − h2k

′
2 = b h2f

′
2 − f2k2 = 0 k2

2 − f 2
2 = b (8)

c1 = c2 = 0 (9)

h1 = Ah2 f1 = Ak2 k1 = Af2 g1 = Ag2 (10)

A2 = a

b
= ±1. (11)

Here we have assumed that hi(x) �= 0, ki �= 0 and fi �= 0 holds. For hi(x) = 0 the differential
term with respect to x would be cancelled in J± (1) and K± (3), while fi(x) = ki(x) = 0
would contradict equation (8). We also note that from the three equations in (8) only
two are independent and that the choice of h2(x) determines f2(x) and k2(x) immediately.
However h2(x) does not determine g2(x), so there are two independent functions defining this
construction.

The Casimir invariant

C
(JK)
2 = 2C(J)2 + 2C(K)2 ≡ 2

(−aJ+J− + J 2
z − Jz − bK+K− +K2

z −Kz
)

(12)

is a second-order differential operator

C
(JK)

2 � = 4bh2
2�

′′ + 4bh2(h
′
2 + 2g2 − k2)�

′ +
[
4b

(
h2g

′
2 + g2

2 − k2g2
)

+ 2
(
1 − bk2

2 − bf 2
2

) (
J 2
z +K2

z

) − 8bf2k2JzKz
]
�. (13)

The eigenfunctions of C(JK)2 , which are also the eigenfunctions of Jz and Kz, are � ≡
�(x, φ, χ) = ei(mφ+m′χ)ψ(x). Here ψ(x) is the physical wavefunction depending on the
coordinate x, while φ and χ are auxiliary variables, which are multiplied with m and m′, the
eigenvalues of generators Jz andKz, respectively.

Since the above algebras are of rank 2, they admit a second Casimir invariant, which can
be written as the difference of the two SO(2, 1) Casimir invariants in (12)

C̃
(JK)

2 = 2C(J)2 − 2C(K)2 . (14)

It turns out that the eigenvalue of this operator is always zero for the present differential
realization of the algebra, irrespective of a and b. Therefore, we have generated the symmetric
irrep of so(2, 2) (or so(4)) [12], usually labelled as (ω, 0), where ω is the quantum number
defining the eigenvalue of the first Casimir invariant

C
(JK)
2 � = ω(ω + 2)�. (15)

ω is connected with the eigenvalue j (j + 1) of the Casimir invariant of so(2, 1) (or so(3))
by the relation ω = 2j . Of course, a simple formal transition from an so(2, 1) algebra to
an so(3) algebra can be made by multiplying the hi, gi, fi , ki, ci (i = 1, 2) functions with
the imaginary unit i. This exactly corresponds to the changes a → −1 and b → −1. This
simultaneous change of the two subalgebras corresponds to A = ±1. In principle, we can try
to change only one of the so(2, 1) subalgebras into so(3) (i.e. to take A = ± i), but it turns out
that this complicates the structure of the differential equation obtained from (15) so much that
it no longer becomes solvable in general.

We note that the f2 = 0 choice is also possible in the set of equations (8), but then the
other functions will give less rich structure to the generators. In that case only the hi and gi
will be non-constant functions:

h1 = Ah2 g1 = Ag2 +D k2 = ±b1/2

f1 = ±a1/2 k1 = f2 = c1 = c2 = 0.
(16)
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The generators (1) and (3) transform in a characteristic way with respect to variable
transformations x → z

hi(x) → hv
i (z) = hi(x(z))

dz

dx
gi(x) → gv

i (z) = gi(x(z))

fi(x) → f v
i (z) = fi(x(z)) (17)

ki(x) → kv
i (z) = ki(x(z))

ci(x) → cv
i (z) = ci(x(z))

and similarity transformations

Jα → J s
α = FJαF−1 (18)

governed by F = 1/v(x):

hi(x) → hs
i (x) = hi(x)

gi(x) → gs
i (x) = gi(x) + hi(x)

d

dx
ln v(x)

fi(x) → f s
i (x) = fi(x) (19)

ki(x) → ks
i (x) = ki(x)

ci(x) → cs
i (x) = ci(x).

These results are similar to those in [8] derived for su(1, 1) ∼ so(2, 1) algebras related to the
same problem. These generators are obtained from J+ and J− in equation (1) by replacing c1

with k1 and then dropping the Kz term. We are going to discuss the importance of the two
distinct algebras later on in this section.

2.1. The Schrödinger equation

If we want to cancel the linear derivative term in (13), then we can make use of the freedom
of choosing g2(x) and prescribe

g2 = 1
2 (k2 − h′

2) (20)

using a similarity transformation (19). With this choice we get

C
(JK)

2 � = 4bh2
2�

′′ +
[
b

(
(h′

2)
2 + k2

2 − 2h′′
2h2

) − 2 + 4
(
1 − bk2

2

)(
J 2
z +K2

z

) − 8bf2k2JzKz
]
�

= ω(ω + 2)�. (21)

A Schrödinger-type differential equation can be obtained from equation (21) for constant
h2 as

− 1

4bh2
2

[
C
(JK)
2 − ω(ω + 2)

]
� = 0 (22)

after substituting the eigenvalues m and m′ of the operators Jz and Kz. Equation (22) implies
that in this case the energy eigenvalues are related to the eigenvalues of the Casimir operator.
In fact, the energy eigenvalues are E = −(ω + 1)2

/(
4bh2

2

)
, and the Hamiltonian is related to

C
(JK)

2 via H = −(
C
(JK)

2 + 1
)/(

4bh2
2

)
.

Some exactly solvable shape-invariant potentials can be derived with the algebraic
construction described previously. These potentials all belong to the PI class in the
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classification used in [8, 17], and the algebra corresponding to them is either so(2, 2)
(a = b = 1) or so(4) (a = b = −1). In this subsection we focus on the members of
the PI potential class. There is some ambiguity in the names of these potentials; here we
follow the notation of figure 5.1 in [2].

The hyperbolic type Scarf (or Gendenshtein) potential (class PI(i sinh(x)) [17]) with
so(2, 2) generators is obtained by substituting h2 = 1, g2 = − 1

2 tanh x, f2 = i/ cosh x, k2 =
−tanh x and a = b = 1:

V (x) = −
(
m2 +m′2 − 1

4

)
1

cosh2 x
− 2imm′ sinh x

cosh2 x
(23)

and the so(2, 2) generators are

J± = e±iφ

(
± ∂

∂x
− tanh x

(
Jz ± 1

2

)
+

i

cosh x
Kz

)
(24)

K± = e±iχ

(
± ∂

∂x
− tanh x

(
Kz ± 1

2

)
+

i

cosh x
Jz

)
. (25)

We are going to study this potential in detail in the next section. It is to be stressed that in the
case m andm′ are real, potential (23) is not Hermitian, but PT -symmetric, i.e. invariant under
simultaneous parity reflection and time reversal, and satisfies the condition V (x) = V ∗(−x).

Generalized Pöschl–Teller potential (class PI(cosh(x)) [17, 26, 27] with so(2, 2)
generators:

V (x) =
(
m2 +m′2 − 1

4

)
1

sinh2 x
− 2mm′ cosh x

sinh2 x
(26)

J± = e±iφ

(
± ∂

∂x
− coth x

(
Jz ± 1

2

)
+

1

sinh x
Kz

)
(27)

K± = e±iχ

(
± ∂

∂x
− coth x

(
Kz ± 1

2

)
+

1

sinh x
Jz

)
. (28)

The Pöschl–Teller II potential (class PI(cosh(2x)) [17]) with so(2, 2) generators:

V (x) = −
(
(m−m′)2 − 1

4

)
1

cosh2 x
+

(
(m +m′)2 − 1

4

)
1

sinh2 x
(29)

J± = 1

2
e±iφ

(
± ∂

∂x
− (coth x + tanh x)

(
Jz ± 1

2

)
+ (tanh x − coth x)Kz

)
(30)

K± = 1

2
e±iχ

(
± ∂

∂x
− (coth x + tanh x)

(
Kz ± 1

2

)
+ (tanh x − coth x)Jz

)
. (31)

This potential is basically equivalent to the generalized Pöschl–Teller potential (26) (it can be
obtained from it by a variable transformation x → x/2) and has been discussed in [11, 18, 19],
for example, together with the corresponding so(2, 2) algebra, as a problem on the real half-
line, owing to the singularity at the origin. We shall study a regularizedPT -symmetric version
of it in the next section.

Trigonometric type Scarf potential (class PI(cos(x)) [17]) with so(4) generators:

V (x) =
(
m2 +m′2 − 1

4

)
1

sin2 x
− 2mm′ cos x

sin2 x
(32)

J± = e±iφ

(
± ∂

∂x
− cot x

(
Jz ± 1

2

)
+

1

sin x
Kz

)
(33)
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K± = e±iχ

(
± ∂

∂x
− cot x

(
Kz ± 1

2

)
+

1

sin x
Jz

)
. (34)

Pöschl–Teller I potential (class PI(cos(2x)) [17]) with so(4) generators:

V (x) =
(
(m +m′)2 − 1

4

)
1

sin2 x
+

(
(m−m′)2 − 1

4

)
1

cos2 x
(35)

J± = 1

2
e±iφ

(
± ∂

∂x
+ (tan x − cot x)

(
Jz ± 1

2

)
− (cot x + tan x)Kz

)
(36)

K± = 1

2
e±iχ

(
± ∂

∂x
+ (tan x − cot x)

(
Kz ± 1

2

)
− (cot x + tan x)Jz

)
. (37)

Again, this is an equivalent form of equation (32). This potential and the relevant so(4) algebra
have been discussed in [20], and later on in [21], where the so(4) potential algebra has been
extended to an sl(4,R) dynamical potential algebra. Some elements of this latter algebra are
beyond the differential realization we considered here.

The potentials (23), (26), (29), (32) and (35) have the common feature that the algebras
assigned to them are all potential algebras. As discussed in [8], this is related to the fact that
the hi(x) functions appearing in the generators (1) (and (3)) are constants, and consequently
the coefficient of the second-order derivative term in the equation of the Casimir operator
(13) is also constant, so this equation directly becomes Schrödinger-like. Obviously, the
generators J± and K± then ladder between states with the same energy, so they are elements
of a potential algebra and can easily be related to SUSYQM generators which act similarly [8].
In the language of the factorization method [1, 7] this corresponds to type A factorization, as
discussed in [17], for example. When the hi(x) functions are not constants, then equation (13)
is not Schrödinger-like and the generators ladder between levels belonging to different energies.
In some of these cases one naturally gets spectrum generating algebras from this systematic
procedure [8].

Finally we mention that it is also possible to derive the Schrödinger equation for the
f2 = 0 case, as in equation (16). Assuming again g1 = (f1 − h′

1)/2, g2 = (k2 − h′
2)/2 and

D = 0, the equation of the Casimir operator is

C
(JK)
2 � = 4bh2

2�
′′ +

[
4b

(− 1
2h2h

′′
2 + 1

4 (h
′
2)

2) − 1
]
�

= ω(ω + 2)ψ. (38)

However, it turns out that although it is possible to obtain Schrödinger-like equations
from (38), this more restricted construction is not flexible enough to accommodate all the
solutions in the same algebraic framework.

2.2. The hypergeometric differential equation

We can define the hi, gi, fi and ki functions such that equation (13) reproduces the
hypergeometric equation

z(1 − z)
d2F

dz2
+ [γ − (α + β + 1)z]

dF

dz
− αβF = 0 (39)

rather than the Schrödinger equation. If this turns out to be possible, then obviously,
the Schrödinger equation with solvable potentials related to the hypergeometric equation
(i.e. Natanzon potentials) can also be related to this algebra by means of variable and similarity
transformations (17) and (19).



5048 G Lévai et al

Equations (8) indicate that choosing h2(z) determines all the other unknown functions. A
natural choice for h2(z) is

h2(z) = dzp(1 − z)q. (40)

Starting with d = b−1/2, p = 1/2 and q = 1, i.e. h2 = b−1/2z1/2(1 − z) and setting b = 1
we get

h2(z) = Ah1(z) = z1/2(1 − z)

k2(z) = Af1(z) = − 1
2z

−1/2(1 + z) (41)

f2(z) = Ak1(z) = 1
2z

−1/2(1 − z).

To get the hypergeometric equation, one has to set gi(z) as

g2(z) = Ag1(z) = γ − 1

2
z−1/2 − α + β

2
z1/2. (42)

With this choice the equation of the C(J,K)2 Casimir operator (15) becomes 4(1 − z) times
equation (39) with the basis functions

� = ei(mφ+m′χ)F (α, β; γ ; z) (43)

provided that the parameters α, β and γ are related to the group representation labels as

(γ − 1)2 = (m−m′)2 (α − β)2 = (m +m′)2 (α + β − γ )2 = (ω + 1)2. (44)

This is similar to equation (3.1.21) in [22], although in that realization of the algebra m1 and
m2 correspond to our m +m′ and m−m′.

For b = −1, trigonometric functions appear in the fi(z), ki(z) and gi(z) functions and
they cannot be cancelled from (13), so one cannot get the hypergeometric equation from it.

The ladder operators are

J± = e±iφz−1/2

(
±z(1 − z)

∂

∂z
± γ − 1

2
∓ α + β

2
z− 1

2
(1 + z)Jz +

1

2
(1 − z)Kz

)
(45)

K± = e±iχ z−1/2

(
±z(1 − z)

∂

∂z
± γ − 1

2
∓ α + β

2
z +

1

2
(1 − z)Jz − 1

2
(1 + z)Kz

)
. (46)

This realization is different from those in [7] for several reasons. First, there is only one set of
generators related to a G(1, 0) algebra, which corresponds to our so(2, 1) or so(3). Second,
the equivalents of our ladder operators J+ and J− would contain different h1 functions.

Now we can assume that

(γ − 1) = m−m′ α − β = m +m′ (47)

i.e.

m = 1
2 (α − β + γ − 1) m′ = 1

2 (α − β − γ + 1). (48)

The other choices of the signs due to taking the square roots in equation (44) simply correspond
to exchanging J± with K± and/or α with β.

One can show that the effect of the ladder operators is the following:

J+ψm,m′ (z) = α(β − γ )

γ
z1/2ψm+1,m′ (z)

= α(β − γ )

γ
z1/2 ei[(m+1)φ+m′χ ]F(α + 1, β; γ + 1; z) (49)

J−ψm,m′ (z) = (1 − γ )z−1/2ψm−1,m′ (z)

= (1 − γ )z−1/2 ei[(m−1)φ+m′χ ]F(α − 1, β; γ − 1; z) (50)
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K+ψm,m′ (z) = (γ − 1)z−1/2ψm,m′+1(z)

= (γ − 1)z−1/2 ei[mφ+(m′−1)χ ]F(α, β − 1; γ − 1; z) (51)

K−ψm,m′ (z) = β(γ − α)

γ
z1/2ψm,m′−1(z)

= β(γ − α)

γ
z1/2 ei[mφ+(m′−1)χ ]F(α, β + 1; γ + 1; z). (52)

Equations (49)–(52) show that the ladder operators change the indices m,m′ and variables
α, β, γ in the expected way, however, the right-hand sides of these equations contain a
z-dependent factor in addition to the basis functions (43). Nevertheless, direct calculation
shows that the basis functions (43) satisfy the eigenequation (15) of the Casimir operator.

Other choices of d, p and q could also be made in equation (40), and they might also lead
to the hypergeometric differential equation with other realizations.

Finally, in [12, 22] it was shown that an so(2, 1) algebra related to the confluent
hypergeometric equation can also be obtained from the so(2, 2) algebra by using a contraction
mechanism. We also find that the differential realizations (1) and (3) are not suitable to
derive the confluent hypergeometric equation, however, the so(2, 1) algebra related to it can
be obtained from (1) with h1 = z, g1 = (c − z)/2, f1 = 1, k1 = 0, c1 = −z/2 and a = 1. In
this case the basis functions are eimφF(α, γ ; z) with α = −j +m and γ = −2j .

3. Algebraic treatment of PT -symmetric potentials

Let us study now the role of the two subalgebras and in particular, that of the ladder operators
J± and K±. Their structure is rather similar, and we saw that they systematically change the
m and m′ representation labels in the two independent solutions. In normal circumstances
(i.e. Hermitian problems), only one of the solutions is regular, which might raise the question
whether we face some kind of redundancy. However, as we shall see below, the two solutions
can both be defined to be regular when the potentials are not Hermitian anymore; nevertheless,
they satisfy the requirement of PT symmetry [23]. For one-dimensional potentials this
invariance means V ∗(−x) = V (x). With the example of the hyperbolic Scarf and the
Pöschl–Teller II potentials we demonstrate below that there are two essentially different
ways to obtain the doubling of regular (real-energy bound-state) solutions, applicable to
different types of potentials. In the first case the potential is regular even in the Hermitian
case, and the second set of regular solutions develops from resonance solutions when
PT symmetry is prescribed. This scenario has already been studied using the smaller
su(1, 1) ∼ so(2, 1) algebra and, consequently, only in the presence of a single set of ladder
operators [14]. In the second case the Hermitian potential is singular at x = 0, however, it
can be regularized and extended to the full x axis by a formal imaginary coordinate shift [24],
which breaks Hermiticity, while respecting PT symmetry.

This imaginary shift, x → x + iε, destroys the P symmetry of the hyperbolic and
trigonometric functions appearing in the examples of section 2.1, nevertheless, these functions
maintain definite symmetry with respect to PT symmetry [24]. In fact, this also determines
the way the generators (1), (2), (3) and (4) transform under the PT operation. Introducing a
tilde to indicate that the generators now depend on the ε parameter, we find that

PT (J̃ /K̃)±(PT )−1 = (J̃ /K̃)∓ (53)

PT (J̃ /K̃)z(PT )−1 = −(J̃ /K̃)z. (54)
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These relations hold whenever the hi(x) and ci(x) functions appearing in (1) and (3) are even
under the PT operation, while the others, gi(x), fi(x) and ki(x), are odd. Also note that the
PT operation has the same effect on the two ladder operators as Hermitian conjugation in
the standard Hermitian case; this property is valid within the framework of the direct sum of
the two J and K subalgebras, but not in the simpler so(2, 1) case of [14]. In that case the role
of Kz is played by a real number, and these quantities obviously transform in a different way
under the PT operation.

3.1. The hyperbolic Scarf potential

Let us first analyse the (hyperbolic) Scarf potential, writing it in a more traditional form:

V (x) = (λ2 − s(s + 1))
1

cosh2 x
+ λ(2s + 1)

sinh x

cosh2 x
. (55)

Obviously, potential (23) is obtained from this by the substitutions s = m−1/2 and λ = −im′.
The two independent solutions are then

F1(x) = (1 + iy)−
s−iλ

2 (1 − iy)−
s+iλ

2 F

(
−s − ik,−s + ik, iλ− s +

1

2
; 1 + iy

2

)
(56)

and

F2(x) = (1 + iy)
s+1−iλ

2 (1 − iy)−
s+iλ

2 F

(
1

2
− iλ− ik,

1

2
− iλ + ik, s +

3

2
− iλ; 1 + iy

2

)
(57)

with y = i sinh x. As discussed in [14], these solutions lead to discrete eigenvalues when
k = i(s − n) and k = ±λ− i

(
n + 1

2

)
holds for the two solutions, respectively.

Multiplying (56) and (57) with the usual phase factors, we find that the effect of the ladder
operators on the �1(m,m

′; x) = ei(mφ+m′χ)F1(x) and �2(m,m
′; x) = ei(mφ+m′χ)F2(x) basis

functions is that J+ (J−) increases (decreases) s and therefore m by one unit, while K+ (K−)
does the same with iλ and m′. As an illustration we present here the effect of J± and K± on
the function�1(m,m

′; x):
J+�1(m,m

′; x) = 2i

(
iλ− (s + 1) +

1

2

)
ei[(m+1)φ+m′χ ](1 + iy)−

(s+1)−iλ
2 (1 − iy)−

(s+1)+iλ
2

×F
(

−(s + 1)− ik,−(s + 1) + ik, iλ− (s + 1) +
1

2
; 1 + iy

2

)

= 2i(m′ −m)�1(m + 1,m′; x) (58)

J−�1(m,m
′; x) = − i

2

(−s − ik)(−s + ik)

iλ− s + 1
2

ei[(m−1)φ+m′χ ](1 + iy)−
(s−1)−iλ

2 (1 − iy)−
(s−1)+iλ

2

×F
(

−(s − 1)− ik,−(s − 1) + ik, iλ − (s − 1) +
1

2
; 1 + iy

2

)

= − i

2

(−m + 1
2 − ik

) (−m + 1
2 + ik

)
m′ −m + 1

�1(m− 1,m′; x) (59)

K+�1(m,m
′; x) = i

(
1
2 + iλ− ik

) (
1
2 + iλ + ik

)
−s + 1

2 + iλ
ei[mφ+(m′+1)χ ](1 + iy)−

s−(iλ+1)
2 (1 − iy)−

s+(iλ+1)
2

×F
(

−s − ik,−s + ik,−s +
1

2
+ (iλ + 1); 1 + iy

2

)

= i

(
m′ + 1

2 − ik
) (
m′ + 1

2 − ik
)

m′ −m + 1
�1(m,m

′ + 1; x). (60)
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K−�1(m,m
′; x) = −i

(
−s +

1

2
+ (iλ− 1)

)
ei[mφ+(m′−1)χ ](1 + iy)−

s−(iλ−1)
2 (1 − iy)−

s+(iλ−1)
2

×F
(

−s − ik,−s + ik,−s +
1

2
+ (iλ− 1); 1 + iy

2

)

= i(m−m′)�1(m,m
′ − 1; x). (61)

Similar relations hold for �2(m,m
′; x) too. These can be obtained observing that the two

independent solutions (56) and (57) are interrelated by the s ↔ iλ − 1
2 , i.e. the m ↔ m′

replacement [14]. More precisely, the action of the so(2, 2) generators on �2 is obtained
from equations (58) to (61) by the following replacements: J ↔ K,m ↔ m′,�1(a, b; x)→
�2(b, a; x).

When the potential (55) is Hermitian (i.e. λ is real), then only (56) leads to bound-
state (normalizable) solutions, and the energy eigenvalues are En = k2 = −(s − n)2. In
fact, in this case the second set of solutions corresponds to resonances [14], with energies
En = k2 = λ2 − (

n + 1
2

)2 ± iλ(2n + 1). In [14] this was interpreted in the following way. The
bound-state solutions form a basis for one of the su(1, 1) ∼ so(2, 1) algebras and belong to a
discrete unitary representation of it, while resonance solutions are assigned to the non-unitary
discrete irreps of the other su(1, 1) ∼ so(2, 1) algebra [25].

Remarkably, there is a situation when both (56) and (57) lead to normalizable solutions.
For this, λ has to be chosen imaginary such that n + 1

2 < iλ holds. This means that the second
set of energy eigenvalues also becomes real, however, the potential (55) becomes complex,
which is also obvious from (23). This is exactly the case of the PT invariant Scarf potential.
PT invariant potentials are known to have real energy eigenvalues in certain circumstances,
although they do not fulfil Hermiticity, but only the weakened condition of being invariant
under simultaneous space (P) and time (T ) reflection [15]: this corresponds to prescribing
V ∗(−x) = V (x). The particular case of the PT invariant Scarf potential has been discussed
in algebraic terms already [14, 26], however, then the sl(2,C) and su(1, 1) algebras were
associated with it. Now it is obvious that these algebras can be embedded into larger algebras
for the PT invariant version of this potential. The normalizable states of this potential will
then belong to discrete irreducible representations of the relevant non-compact groups. In
previous applications these were assigned to similar irreps of the SO(2, 1) or SO(3) subgroups.

As an interesting recent development related to the PT invariant Scarf potential, it was
shown that in certain situations this potential supports no (real-energy) bound states, rather
all its energy eigenvalues are complex [28]. Using the present notation this corresponds to
the relation 2|mm′| > m2 + (m′)2. This would require both m and m′ to be imaginary, which
indeed, corresponds to having complex-energy eigenstates for both sets of solutions. This
problem has been discussed also in [29], where a systematic search was presented for PT
invariant potentials having complex-energy solutions.

3.2. The Pöschl–Teller II potential

As the second example, let us consider the PT -symmetrized version of the Pöschl–Teller II
potential (29), which, as we noted, is an alternative form of the generalized Pöschl–Teller
potential (26). For this, let us introduce the imaginary coordinate shift x → x + iε, where ε is
a real parameter [24]. This simple transformation can be interpreted in several ways. First, it
is similar to other PT -symmetric systems in that the problem is now defined on a contour of
the complex plane [23]. However, when this contour is simply a straight line parallel to the
x axis, the imaginary coordinate shift can be interpreted as if the whole problem were defined
on the real x axis, and only the potential parameters had been defined to be complex [14].
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In particular, the coupling coefficients of the even and odd potential components are real and
imaginary, respectively, as they should be for PT -symmetric problems.

The present subsection focuses on scattering aspects, while for the bound-state problem
we refer to a recent work of Znojil [16].

The solution to the Schrödinger equation for the scattering states of potential (29) has
been discussed in detail by various authors [11, 19, 30]. Since the potential is singular at the
origin, the scattering solution is limited to the positive (or negative) half-line, thus yielding a
transmission coefficient T equal to zero, and a reflection coefficient R of unit modulus.

The PT -symmetric version is obtained by the replacement x → x + iε, which removes
the singularity at the origin, provided |ε| < π/2, so that both R and T are, in general, different
from zero:

V (x) = −
(
(m−m′)2 − 1

4

)
1

cosh2 α
+

(
(m +m′)2 − 1

4

)
1

sinh2 α
(62)

where α = x + iε [32]. We treat the PT -symmetric case in the same way as we did for the
Scarf potential [14]. If one assumes that m +m′ is not integer, the two independent solutions
can be written in terms of hypergeometric functions as

F1(x) =
(
z− 1

2

) 1
2 (m+m′+ 1

2)
(
z + 1

2

) 1
2 (m−m′+ 1

2 )

×F
(

i
k

2
+m +

1

2
,−i

k

2
+m +

1

2
;m +m′ + 1; 1 − z

2

)
(63)

and

F2(x) =
(
z− 1

2

) 1
2 (−m−m′+ 1

2)
(
z + 1

2

) 1
2 (m−m′+ 1

2 )

×F
(

i
k

2
−m′ +

1

2
,−i

k

2
−m′ +

1

2
; −m−m′ + 1; 1 − z

2

)
(64)

where z = z(x) = cosh(2(x + iε)). Note that (63) and (64) are obtained from each
other by applying m ↔ −m′. (An alternative form of these solutions is presented in
[19, 31] in terms of generalized Legendre functions.) The action of the ladder operators
(30) and (31) on the algebraic versions of (63) and (64), �1(m,m

′; x) = ei(mφ+m′χ)F1(x) and
�2(m,m

′; x) = ei(mφ+m′χ)F2(x) is similar to equations (58) to (61): J± and K± shift by one
unit the m and m′ labels, respectively.

Elementary quantum mechanics provides the reflection and transmission coefficients as
functions of the asymptotic amplitudes of the progressive and regressive waves contained in
F1 and F2 [30]:

lim
x→±∞Fi(α(x)) = ai± eikx + bi± e−ikx (i = 1, 2) (65)

T = a2+b1+ − a1+b2+

a2−b1+ − a1−b2+
(66)

R = b1+b2− − b1−b2+

a2−b1+ − a1−b2+
. (67)

In order to compute the asymptotic coefficients ai± and bi±, we exploit the following
expansion of the hypergeometric function:

lim
|t|→∞

F(a, b, c; t) = 
(c)

(

(b − a)


(b)
(c − a)
(−t)−a +


(a − b)


(a)
(c − b)
(−t)−b

)
. (68)
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The final result for the asymptotic coefficients of F1(x) is then

a1+ = 2−ik e−kε 
(m +m′ + 1)
(ik)



(
i k2 + 1

2 +m
)



(
i k2 + 1

2 +m′) (69)

b1+ = 2ik ekε

(m +m′ + 1)
(−ik)



(−i k2 + 1

2 +m
)



(−i k2 + 1
2 +m′) (70)

a1− = (−1)m+m′+ 1
2 2ik e−kε 
(m +m′ + 1)
(−ik)



(−i k2 + 1

2 +m
)



(−i k2 + 1
2 +m′) (71)

b1− = (−1)m+m′+ 1
2 2−ik ekε


(m +m′ + 1)
(ik)



(
i k2 + 1

2 +m
)



(
i k2 + 1

2 +m′) . (72)

The following relations hold:

b1− = (−1)m+m′+ 1
2 e2kεa1+ (73)

a1− = (−1)m+m′+ 1
2 e−2kεb1+. (74)

According to the expression ofF2(x) in (64), the a2± and b2± coefficients are immediately
obtained from a1± and b1± by exchanging m and −m′. Thus we have

b2− = (−1)−m
′−m+ 1

2 e2kεa2+ (75)

a2− = (−1)−m
′−m+ 1

2 e−2kεb2+ (76)

so T and R are obtained as

T = e2kε (−1)m
′+m− 1

2

1 − (−1)2(m+m′)

(
a2+

b2+
− a1+

b1+

)
(77)

R = e4kε

1 − (−1)2(m+m′)

[
a2+

b2+
− (−1)2(m+m′) a1+

b1+

]
. (78)

Here

a2+

b2+
= 2−2ik e−2kε 
(ik)


(−ik)



(

1
2 −m′ − i k2

)



(
1
2 −m− i k2

)



(
1
2 −m′ + i k2

)



(
1
2 −m + i k2

) (79)

and

a1+

b1+
= 2−2ik e−2kε 
(ik)


(−ik)



(

1
2 +m− i k2

)



(
1
2 +m′ − i k2

)



(
1
2 +m + i k2

)



(
1
2 +m′ + i k2

) . (80)

With these the transmission coefficient (77) takes the form

T = 2−2ik

2π



(
m′ + 1

2 − i k2
)



(−m′ + 1
2 − i k2

)



(−m + 1
2 − i k2

)



(
m + 1

2 − i k2
)


(1 − ik) 
(−ik)
(81)

while the reflection coefficient (67) is expressed as

R = T i e2εk

[
−cos((m−m′)π)

sinh(πk)
+ cos((m +m′)π)(1 − coth(πk))

]
. (82)

Note that while T is independent of ε, R is not, similarly to our previous findings [14]
concerning the Scarf (or Gendenshtein) potential discussed also in the previous subsection.
Note also that for m′ = −m − 1

2 the Pöschl–Teller II potential (62) becomes the ordinary
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Pöschl–Teller potential (more precisely, its PT -symmetric version), thus T in (81) also reduces
to a simplified form

Tm′=−m− 1
2

= 
(2m + 1 − ik)
(−2m− ik)


(1 − ik)
(−ik)
(83)

which, furthermore, has unit modulus whenever m takes on integer or half-integer values. This
demonstrates the well-known fact that for certain depths the ordinary Pöschl–Teller potential
is reflectionless (R = 0), and in fact, this result also holds for the PT -symmetric version of
this potential as can be seen after substituting m′ = −m − 1

2 into (82) and then setting m to
integer or half-integer values. The same results follow also from the Pöschl–Teller limit of the
Scarf potential, which is obtained for λ = 0 in the previous subsection and in [14].

It is to be stressed that, since m andm′ are not simultaneously either integer or half-integer,
then our wavefunctions cannot be classified in an ordinary irrep of the continuous principal
series of so(2, 2) [12] with quantum number ω = −1 − ik, rather projective irreps [33] have
to be considered then.

The bound-state energies are obtained from the poles of the transmission coefficient (81)
and are naturally arranged as follows

2m′ + 1 − ik = −NI → EI = k2 = −(2m′ + 2NI + 1)2 (84)

−2m′ + 1 − ik = −N II → EII = −(−2m′ + 2N II + 1)2 (85)

−2m + 1 − ik = −N III → EIII = −(−2m + 2N III + 1)2 (86)

2m + 1 − ik = −N IV → EIV = −(2m + 2N IV + 1)2. (87)

In the above formulae the N on the rhs are non-negative integers. Formula (84) holds for
m′ < 0 and implies a finite number of bound states, since 2NI + 1 < −2m′. Analogously,
(85) holds for m′ > 0, (86) for m > 0 and (87) for m < 0. In all cases the number of bound
states is finite. Bound-state energies and wavefunctions agree with those of [16]: in particular,
our hypergeometric functions reduce to Jacobi polynomials.

4. Conclusions

Starting with a general differential realization, we introduced an algebraic construction which
includes the so(2, 2) and so(4) algebras related to second-order differential equations. With an
appropriate choice of the generators one can derive the hypergeometric differential equation
or the Schrödinger equation with various potentials. In the latter case one obviously arrives
at the Natanzon potentials, which have hypergeometric functions in their solution. The
transformation between these differential equations is naturally performed by variable and
similarity transformations, which leave the structure of the algebra invariant, except for
changing compact algebras into non-compact ones (e.g. so(3) ↔ so(2, 1), etc). Our study
extended the range of a similar work in which the differential realization of the su(1, 1) ∼
so(2, 1) algebra was considered.

We have shown that the two subalgebras are related to the two independent solutions of
the second-order differential equations. We analysed a number of solvable shape-invariant
potentials for which the so(4) or so(2, 2) algebra appears as a potential algebra. These are the
type A problems of the factorization method [7], for which the ladder operators are practically
identical [8] with the SUSYQM operators which connect states belonging to the same energy
but different potential strengths.

For Hermitian potentials only one of the solutions leads to bound (normalizable) states,
and this explains why only the role of one of the two subalgebras has been emphasized
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in most of the previous applications. With the example of the hyperbolic Scarf potential
we have shown that replacing Hermiticity with the requirement for PT invariance of the
potential results in situations in which both solutions lead to normalizable states with real
energy eigenvalues. Thus we have a problem where the carrier space of the so(2, 2) algebra
is formed completely by normalizable states. We also demonstrated that the second set of
solutions also appears naturally in the algebraic context for potentials which are singular at
the origin in their Hermitian version, but can be regularized when they are required to be
PT -symmetric. We have shown that for the Pöschl–Teller II potential the transmission
coefficients are independent of ε, the parameter governing the complex coordinate shift, and
that although this is not valid for the reflection coefficient in general, the ordinary Pöschl–
Teller potential remains reflectionless for certain depths, even if this complex coordinate shift
is applied to it.

We note that the PT symmetry approach of defining potentials on various trajectories of
the complex x plane actually unifies the PI-type potentials discussed in section 2.1, and allows
their interpretation as manifestations of the same potential defined on various lines of the x
plane. Let us consider, for example, the generalized Pöschl–Teller potential (26) defined as
the function of z = u + iv. The (u, v) = (x, π/2), (x, 0), (2x, 0), (0, x) and (0, 2x) choices
lead to potentials containing the two terms as in (23), (26), (29), (32) and (35), respectively.
Relaxing further the conditions regarding the complex coordinate, we can also easily introduce
the PT -symmetric versions of these potentials depending on the shifted coordinate x +iε [24].

In this paper we discussed only potential algebras, but the formalism followed here can
be used to describe other structures, such as spectrum generating algebras too. Similarly to
the su(1, 1) ∼ so(2, 1) case, this would correspond to taking hi(x) �= const in (1) and (3)
[8]. In this case the j quantum number sets the potential strength via the j (j + 1) eigenvalue
of the Casimir invariant, and the generators ladder between the states of the same potential.
A particularly interesting aspect of this approach can be considering various versions of
trigonometric Pöschl–Teller-like potentials as periodic problems. The singularities at the
domain walls can cause a problem, however, as it was pointed out in [34], when the coupling
strength of the j (j + 1)x−2-like terms (in fact, that of the j (j + 1) sin−2 x-like terms) is in
the ‘weakly attractive’ domain, i.e. − 1

4 < j(j + 1) < 0, then physically sound solutions can
exist, which, furthermore, correspond to the unitary irreducible representations of SU(1, 1)
called the supplementary series. Other types of the unitary irreducible representations of this
group have already been associated with bound and scattering states of certain potentials in
the potential algebra formalism [5], and this was the first case when the physical relevance
of the supplementary series has been proposed [34]. More recently it was shown that these
supplementary (or complementary) representations can be associated with the band spectrum
of periodic potentials [35]. Considering that within the framework of PT -symmetric quantum
mechanics the singularities of periodic potentials of the Pöschl–Teller type can be cancelled
in the standard way (see e.g. [36]), one expects that other types of irreducible representations
can also be associated with the band-like spectra of these potentials.

We pointed out the importance of the second independent solution of the Schrödinger
equation, which, in ordinary quantum mechanics, is irregular, except for the ‘weakly attractive’
and ‘weakly repulsive’ domains [37]. In PT -symmetric quantum mechanics this second
solution can be regularized, and this stresses the importance of the second set of (so(2, 1) or
so(3)) algebra associated with these problems and the fact that these can be embedded into
a larger algebra so(2, 2) or so(4). This situation is clearly different from the one discussed
in [11, 12], and it also has group theoretical implications, as discussed in section 3.1. There
the second set of bound-state solutions corresponds to states that appear as resonances in the
Hermitian version of the Scarf potential, and while in the Hermitian case these states are
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assigned to discrete non-unitary irreducible representations (see [25]), in the PT -symmetric
case they belong to discrete unitary irreps.

Similar considerations can be applied to the hypergeometric equation too: the action of
the J± and K± operators on the second independent solution

ψ̃mm′(z) = ei(mφ+m′χ)z1−γ F (α − γ + 1, β − γ + 1; 2 − γ ; z). (88)

is the same as on (43). In fact, we find that the effect of these operators is the same as described
in equations (49)–(52), only the roles of Ji and Ki (and also m and m′) are exchanged. This
interchangeability of the solutions and the algebras seems to be a general feature for all
Natanzon potentials, which are related to the so(2, 2) algebra, because every single such
potential can be derived from it in an algebraic fashion from the hypergeometric differential
equation by variable and similarity transformations.
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[8] Lévai G 1994 J. Phys. A: Math. Gen. 27 3809
[9] Balantekin A B 1998 Phys. Rev. A 57 4188

[10] Gangopadhyaya A, Mallow J V and Sukhatme U P 1998 Phys. Rev. A 58 4287
[11] Wu J, Alhassid Y and Gürsey F 1989 Ann. Phys., NY 196 163
[12] Wu J and Alhassid Y 1990 J. Math. Phys. 31 557
[13] Natanzon G A 1971 Teor. Mat. Fiz. 38 146
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